Skip to main content
Please wait...
Java and Scala Development with the Angel Platform
06 May, 2025

Java and Scala Development with the Angel Platform

🔷 Scala: A Powerful JVM Language 

Scala is a high-level, statically typed programming language that runs on the Java Virtual Machine (JVM). It empowers developers to write concise, expressive, and scalable code by combining the best features of object-oriented programming (OOP) and functional programming (FP). Scala’s seamless interoperability with Java makes it a top choice for building modern, high-performance applications across domains like big data, web development, and machine learning. 

 

🧱 Object-Oriented Programming Features in Scala 

Scala fully supports OOP principles and enhances them with modern constructs: 

  • Classes and Objects: Define reusable blueprints and create instances. 

  • Inheritance: Extend classes and traits to promote code reuse. 

  • Encapsulation: Use access modifiers (private, protected, public) to control visibility. 

  • Polymorphism: Override methods and use subtype polymorphism. 

  • Abstraction: Define abstract classes and traits to model interfaces. 

  • Traits: Mix in reusable behavior across unrelated classes. 

  • Case Classes: Create immutable data models with built-in support for pattern matching. 

  • Companion Objects: Provide static-like methods and factory patterns. 

 

🌐 Popular Open Source Frameworks and Platforms in Scala 

Scala powers many influential open source projects: 

Project 

Domain 

Description 

Apache Spark 

Big Data / Analytics 

Distributed data processing engine written in Scala. 

Akka 

Concurrency / Distributed Systems 

Actor-based toolkit for building resilient, concurrent systems. 

Play Framework 

Web Development 

Reactive web framework for building scalable applications. 

Slick 

Database Access 

Functional Relational Mapping (FRM) for SQL databases. 

Finagle 

RPC / Networking 

Extensible RPC system developed by Twitter. 

Cats / Cats Effect 

Functional Programming 

Libraries for pure functional programming and effect management. 

Scalatra 

Microservices / Web 

Lightweight web framework inspired by Sinatra. 

Lift 

Secure Web Applications 

Full-stack web framework focused on security and productivity. 

 

👋 Hello World in Scala 

Here’s a simple Scala program that prints "Hello, World!": 

object HelloWorld { 
  def main(args: Array[String]): Unit = { 
    println("Hello, World!") 
  } 
} 

You can run this using the Scala REPL or compile it with scalac HelloWorld.scala and run it with scala HelloWorld. 

 

✅ Best Practices for Scala Development 

  • Write Idiomatic Scala 

Use val for immutability. 

Prefer case classes and pattern matching. 

Use for-comprehensions for monadic operations. 

  • Embrace Functional Programming 

Write pure functions and avoid side effects. 

Use Option, Try, or Either instead of null. 

Favor immutable collections and data structures. 

  • Leverage the Type System 

Use sealed traits and algebraic data types (ADTs). 

Avoid Any, unchecked casts, and reflection. 

  • Structure Code Cleanly 

Organize code into modular packages. 

Use companion objects for utility methods. 

Separate business logic from infrastructure. 

  • Use Robust Tooling 

Format code with Scalafmt. 

Enforce style with Scalastyle or WartRemover. 

Test with ScalaTest, MUnit, or Specs2. 

  • Optimize for Performance 

Use lazy val for deferred computation. 

Use Futures, Akka, or Cats Effect IO for concurrency. 

Profile and tune JVM settings for memory and GC. 

  • Manage Builds Effectively 

Use sbt for builds and dependency management. 

Keep dependencies minimal and up to date. 

Use sbt-assembly for packaging fat JARs. 

 

🤖 Use Case: Java + Scala with Angel for Machine Learning and Graph Computing 

Angel is a high-performance distributed machine learning and graph computing platform developed by Tencent. It supports hybrid development in Java and Scala, making it ideal for large-scale model training and graph analytics. 

 

📘 Scenario: Building a Recommendation System 

A data science team wants to build a recommendation engine using collaborative filtering on a massive user-item interaction graph. 

🧩 Architecture: 

  • Data Preprocessing (Scala + Spark): The team uses Apache Spark (Scala) to clean and transform raw interaction logs into a sparse matrix format. 

  • Model Training (Angel + Scala): They define a matrix factorization model using Angel’s Scala API. Angel distributes the training across a parameter server architecture, enabling scalable learning on billions of records. 

  • Integration and Serving (Java): The backend team uses Java to integrate the trained model into a web service. They expose REST APIs for real-time recommendations. 

✅ Benefits: 

  • Scala simplifies data transformation and model definition. 

  • Java ensures robust integration with enterprise systems. 

  • Angel handles distributed training and graph computation efficiently. 

 

 

References

[1] Huaxin, Shi, et al. "An improved kubernetes scheduling algorithm for deep learning platform." 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). IEEE, 2020.